Samsara\Fermat\Core\Provider > SeriesProvider
No description available
Variables & Data
Class Constants
SeriesProvider::SUM_MODE_ADD
SUM_MODE_ADD
- value
- 1
SeriesProvider::SUM_MODE_SUB
SUM_MODE_SUB
- value
- 2
SeriesProvider::SUM_MODE_ALT_ADD
SUM_MODE_ALT_ADD
- value
- 3
SeriesProvider::SUM_MODE_ALT_SUB
SUM_MODE_ALT_SUB
- value
- 4
SeriesProvider::SUM_MODE_ALT_FIRST_ADD
SUM_MODE_ALT_FIRST_ADD
- value
- 5
SeriesProvider::SUM_MODE_ALT_FIRST_SUB
SUM_MODE_ALT_FIRST_SUB
- value
- 6
Methods
Static Methods
public SeriesProvider::generalizedContinuedFraction(ContinuedFractionTermInterface $aPart, ContinuedFractionTermInterface $bPart, int $terms, int $scale, int $sumMode)
generalizedContinuedFraction
$aPart
- type
- ContinuedFractionTermInterface
- description
- No description available
$bPart
- type
- ContinuedFractionTermInterface
- description
- No description available
$terms
- type
- int
- description
- No description available
$scale
- type
- int
- description
- No description available
$sumMode
- type
- int
- description
return
- type
- Samsara\Fermat\Core\Values\ImmutableDecimal
- description
- No description available
generalizedContinuedFraction() Description:
This function processes a generalized continued fraction. In order to use this you must provide two callable classes that implement the ContinuedFractionTermInterface. This interface defines the expected inputs and outputs of the callable used by this function.
This function evaluates continued fractions in the form:
b0 + (a1 / (b1 + (a2 / (b2 + (a3 / b3 + ...)))))
This is a continued fraction in the form used in complex analysis, referred to as a generalized continued fraction.
For more information about this, please read the wikipedia article on the subject:
https://en.wikipedia.org/wiki/Generalized_continued_fraction](https://en.wikipedia.org/wiki/Generalized_continued_fraction)
public SeriesProvider::genericInfiniteProduct(callable $termFunction, int $scale, int $startAt)
genericInfiniteProduct
$termFunction
- type
- callable
- description
- No description available
$scale
- type
- int
- description
- No description available
$startAt
- type
- int
- description
- No description available
return
- type
- Samsara\Fermat\Core\Values\ImmutableDecimal
- description
- No description available
public SeriesProvider::genericInfiniteSum(callable $termFunction, int $scale, int $startAt)
genericInfiniteSum
$termFunction
- type
- callable
- description
- No description available
$scale
- type
- int
- description
- No description available
$startAt
- type
- int
- description
- No description available
return
- type
- Samsara\Fermat\Core\Values\ImmutableDecimal
- description
- No description available
public SeriesProvider::maclaurinSeries(Decimal $input, callable $numerator, callable $exponent, callable $denominator, int $startTermAt, int $scale, int $consecutiveDivergeLimit, int $totalDivergeLimit)
maclaurinSeries
$input
- type
- Decimal
- description
- No description available
$numerator
- type
- callable
- description
- No description available
$exponent
- type
- callable
- description
- No description available
$denominator
- type
- callable
- description
- No description available
$startTermAt
- type
- int
- description
- No description available
$scale
- type
- int
- description
- No description available
$consecutiveDivergeLimit
- type
- int
- description
- No description available
$totalDivergeLimit
- type
- int
- description
return
- type
- Samsara\Fermat\Core\Values\ImmutableDecimal
- description
- No description available
maclaurinSeries() Description:
Creates a series that evaluates the following:
SUM[$startTerm -> infinity]( numerator($n) × $input^$exponent($n)
denominator($n)
Where $n is the current term number, starting at $startTerm, and increasing by 1 each loop; where $numerator, exponent, and $denominator are callables that take the term number (as an int) as their only input, and give the value of that section at that term number; and where $input is the x value being considered for the series.
The function continues adding terms until a term has MORE leading zeros than the $scale setting. (That is, until it adds zero to the total when considering significant digits.)